1. 麦克劳林展开式
本文共 886 字,大约阅读时间需要 2 分钟。
\[\frac{1}{1-x}\] | \[1 + x + x^2 ... x^n\] | \[\sum_{n=0}^{\infty}x^n\] | |
\[\frac{1}{1+x}\] | \[1 - x + x^2 - x^3 ... (-1)^nx^n\] | \[\sum_{n=0}^{\infty}(-1)^nx^n\] | |
\[e^x\] | \[1 + x + \frac{x^2}{2!}+\frac{x^3}{3!} ... \frac{x^n}{n!}\] | \[\sum_{n=0}^{\infty}\frac{x^n}{n!}\] | \[all\] |
\[sinx\] | \[x - \frac{x^3}{3!} +\frac{x^5}{5!} ... (-1)^n\frac{x^{2n+1}}{(2n+1)!}\] | \[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}\] | \[all\] |
\[cosx\] | \[1 - \frac{x^2}{2!} + \frac{x^4}{4!} ... \frac{x^{2n}}{(2n)!}\] | \[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}\] | \[all\] |
\[ln(1+x)\] | \[x - \frac{x^2}{2} + \frac{x^3}{3} ... \frac{x^n}{n}\] | \[\sum_{n=1}^{\infty}(-1)^{n+1}\frac{x^n}{n}\] | \[ [-1,1] \] |
\[(tanx)^{-1}\] | \[x - \frac{x^3}{3} + \frac{x^5}{5} ... (-1)^{n}\frac{x^{2n+1}}{2n+1}\] | \[\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}\] | |
转载于:https://www.cnblogs.com/moonlord/p/5949131.html